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Large-scale numerical simulations of ultrametric long-range depinning
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The depinning of an elastic line interacting with a quenched disorder is studied for long-range interactions,
applicable to in-plane crack propagation or wetting. An ultrametric distance is introduced instead of the
Euclidean distance, allowing for a drastic reduction of the numerical complexity of the problem. Based on
large-scale simulations, two to three orders of magnitude larger than previously considered, we obtain a very
precise determination of critical exponents which are shown to be indistinguishable from their Euclidean
metric counterparts. Moreover, the scaling functions are shown to be unchanged. The choice of an ultrametric
distance thus does not affect the universality class of the depinning transition and opens the way to an analytic
real-space renormalization-group approach.
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[. INTRODUCTION shown to exhibit a self-affine roughness: the widttof the

The depinning of an elastic interface in a random environ-mterf"jlce spales with the system SIZ@_SW“ L,g' The differ-
ment gives a common theoretical framework to describéNt numerical work§6—9 performed give estimations of the
physical phenomena as various as the advance of a magneffi/ghness exponeitspreading in the intervg0.34-0.40.
wall, the propagation of an interfacial fracture front, or the The latter exponent and more generally the universality class
wetting of a disordered surfadsee, e.g., Refd1-3] for a of the model depend strongly on the long-range nature of the
recent review. The richness of the physics encountered inkernel in Eq.(2). For instance, i V?h, then{=1.25. In
these different situations results from the same feature. Thihe long-range case, the most recent results obtained by
disorder of the environment which tends to anchor the interRosso and Krautf9] give a value/~0.39 significantly
face competes with an elasticlike term which tends to keeparger than the theoretical predicti@rx% obtained by one-
the interface smooth. The tuning of an external driving forceloop calculations of the renormalization-group technique
allows us to go through a critical transition. Below threshold,[10,11 and equally smaller than the recent two-loop estima-
the interface can only advance over a finite distance beforgon [12] ;~0.47. Note, however, that these values are not
stopping in a blocked conformation. Above threshold, theconsistent with the resulté~0.5-0.6 obtained experimen-
interface can move freely and acquire a finite velocity. Attg)ly for interfacial fracturg7] or wetting[13,14. Therefore,

threshold, the system is characterized by a set of universgl is of the utmost importance to have an accurate determi-

critical exponents. _ _ nation of these critical exponents, and thus to be able to
In the case of overdamped dynamics, the motion can bgtudy large system sizes.

described by the following stochastic equation: In the following, we present an ultrametric version of an

wmh(X,t) = Fou(t) + Fo (X, 1) + v (X, h(x,1)), (1)  extremal model of depinningsee Ref.[8] for a detailed
study of the original model with the Euclidean mefriche
complexity of the elementary step of calculation is shown to
scale with the system size as log L instead ofL in the

where h(x,t) denotes the position of the fronE,(t) the
external driving forceF.(x,t) the elastic term due to the

distortio_n of the front, gndy (x,h(x, 1)) the frozgn disorder. original model. This allows us to perform simulations on
Depending on the physical phenomenon considered, the ela§§/stems of siz& =220~ 1CP, which corresponds to a gain of

tic term can tqke .d|fferent forms. In the case of_magnetlctwo to three orders of magnitude compared with other pub-
walls or of wetting in a Hele-Shaw cell, the Interactions to beIished works based on the Euclidean metrics. The universal-
taken into account are short-ranged and at first order thﬁy class of the model is shown to be unchanged. Beyond the

elastic force can be estimated by a simple Laplacian My imerical acceleration, this ultrametric model of depinning

—Y72 H
Fe|(_x,t)—_V h(x.1). _In the case of the advan(_:e or receding Ofmay thus also serve as a starting point for a real-space renor-
a triple line on a disordered substr#g or of in-plane crack dmalization analysis.

front propagation, long-range interactions have to be consi The paper is organized as follows. In the first part, we

ered. In the latter case, elastic interactions are medlate'd Vi&call the definition of the original model: we then define the
the bulk along the whole front. A first-order perturbation ;g metric version and present the main features of the new
analysis for the front roughness gives model. In the second part, we give results of simulations
h(x,t) = h(x',t) performed on large systems and focus on the critical proper-
0 2 (2 ties of this ultrametric model of depinning. We conclude that
it lies in the same universality class as its Euclidean version.
This long-range elastic string model has been widely studThe details of the numerical implementation of the algorithm
ied over the past ten years. In particular, the interface isre finally given in an Appendix.

1
Fal,) =~ f dx’

x—x'|?
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Il. EXTREMAL DRIVING OF A DEPINNING FRONT

Various numerical techniques can be used to study the m= /\
depinning phenomenon in the vicinity of the critical thresh-

old. Early works used a direct integration of the equation

above via Eulef6] or Runge-Kuttg15] schemes. Recently,

Rosso and Krauth9] developed an iterative algorithm to

determine the blocked conformations corresponding to a

given constant forcing. They used periodic boundary condi- e . ° . ° ° ° °

tions both along the front and in the direction of propagation, i .]
and the critical threshold is reached when the last blocked

COTfO:rTatlon Sta][tstmovmg_. . the ad f the f FIG. 1. The depthm of the first common ancestor of sitesnd
n the case ot strong pinning, thé advance of e Iront ooy 1o compute the ultrametric distance between poautsl j

proceeds by successive local instabilities. This avalanche beg (i.)=2m-

T o . s Wi, j)=2m-1.
havior is characteristic of the motion of a depinning front.
This property can be exploited to develop an efficient algo-, . | .
rithmpdegcrilg/ing the mot?on of the front c?ose to the criticgal depinning threshold of the current front conformatisit)
threshold. Instead of driving the front at a constant externaf S()- Once identified, the extremal site is advanced up to the
force, it consists of tuning the latter at the exact value suct€xt trap, the elastic forces are updated to take into account
that one and only one site can depin at a time. In so doinghis local displacement, and the new vals+1) of the
the sequence of depinning events is preserved_ The imp|é[0nt depinning threshold is evaluated. We summarize below
mentation of this extremal dynamics, which has been usethe elementary steps of the algorithm used to run the model
since 1992 in various interface growth mod@l6—21, is a_nd we estimate their complexity, given in brackets, to the
straightforward. At each iteration step one needs to identifysizeL of the system.
the weakest site, to advance it up to the next trap, and 0 (a) nitialization h « 0, £¢.0, < random number,
update the Iong—range elastic force§ due to thg change of [0,L-1], L=2", complexity[L].
front conformation. The latter operation scales W|t_h the size (B) Identification of the external sitd, such that
of the front. The great advantage of this method is that the, —fe=min(y,~ f &), complexity[L].
system remains constantly at the edge of the critical behaviot' CIOAd N f' tr,1 | siteh q b
and it is not necessary to tune the external driving foses, (C) Advance o e_extrema siten;, —random number,
e.g., Ref[22] for a discussion on the use of extremal dynam-Mi™ iy * i, complexity [1].
ics to reach the critical state and more generally on the link (D) Update of the trap deptly —random numbef1].
between self-organized criticality and classical critical tran-  (E) Update of the elastic forces™— f £'+G; sh; , where
sitions). Gjj=|i=j|% complexity[L].

Based on the above described extremal modeling, we now (F) Back to step(B).

detail the way to implement the model numerically. The front
is discretized along a regular horizontal grids [0,L-1]
andh; are the coordinates along the front and in the directio
of propagation, respectively. Traps of random depghare
randomly distributed along the direction of propagation. Th
distortion of the front induces elastic forcé§' via a Green
functionG;; =G(r;;), wherer;; is the Euclidean distance sepa-
rating two sites andj along the front. In the case of long-
range elastic interactions, a discretized version of the elastic

a«— b denotes the assignment of valné variablea. Except

for the first initialization step, the two limiting steps are the
"dentification of the extremal site and the update of elastic
forces along the front which both scale linearly with the sys-
Cem sizeL. This sequence of elementary steps is then iterated
T times to obtain statistical averages of the quantities of in-
terest.

redistribution function is such that ll. ULTRAMETRIC DEPINNING
Gi = ili-il™ Gi=->Gj. 3) ThWe now turn to the presentation of the ultrametric model.
i£] e basic rules of the extremal model remain identical ex-

cept for the redistribution of the elastic forces. Instead of
Let us consider a given conformation of the front. For eachysing the natural Euclidean distance along the front, we use
site (i, h;) located in a trap of deptly, we can define a local an ultrametric distance. The structure of the algorithm stays
depinning threshold =y —f £" this site depins as soon as the roughly similar to the previous one, but stefs and(E) are
external driving force= overcomes the threshokl>s. The  shown to be characterized by a complexity in Jagnstead
depinning threshold(t) of the front conformation obtained of L.
at iterationt thus corresponds to the minimal external force The most natural structure to be used in the context of a
to be exerted so that at least one site of the front can depimhodel with ultrametric distance is a dyadic tree. Let us first
s(t)=min; 5. Finally, the critical thresholds* above which  build such a tree whose final leaves are thsites of the
the front can freely propagates$ =max; s(t). The basic rule  depinning front. As illustrated in Fig. 1, the simplest ultra-
of the extremal driving consists at each iteration stegf = metric distance between two sitesnd j is the number of
simply tuning the external force at exactly the value of thebranches that composes the shortest path on the tree between

026103-2



LARGE-SCALE NUMERICAL SIMULATIONS OF.. PHYSICAL REVIEW E 70, 026103(2004)

IV. CHARACTERIZATION OF THE CRITICAL STATE:
NUMERICAL RESULTS

. /\ /\ The propagation of depinning fronts at the critical thresh-
§ old exhibits a rich phenomenology. The front presents a self-
| | VAN § affine roughness: its widttv(Ax) measured over a distance
A A /A\ i /\ Ax scales asv(Ax) = Ax¢, where( is the roughness exponent.
P * ° o L - * The dynamics of depinning is characterized by an ava-

lanche behavior. In the framework of an extremal dynamics,
FIG. 2. When redistributing elastic forces after the depinning ofthis can be described by the distribution of the distances
the extremal sité,, all sites located at the same ultrametric distancebetween two successive depinning site&:) «r=2. General-
m=d,(i,ip) belong to a common subtree and receive the same corizing this distribution for sites corresponding to depinning
tribution. This allows an update by block that scales with the num-events separated by a given time lag allows us to obtain in
ber log, L of these subtrees. Similarly, the tree structure allows us tqgddition the dynamic exponert which characterizes the

find the next extremal sites in only Ipy operations. spreading of the avalanches. Namely, the lateral extersion
of an avalanche of duratiofit scales ag > At~
the two sites. This is exactly twice the depitiof the nearest Another quantity of interest is the external forxaeeded

common ancestor of these two sites. Different choices ofo depin a given conformation of the front. It can be shown
distance are possible based on the tree structure. In the fdi23,24 that the distributionQ(s) of these front depinning
lowing, we use a definition that preserves the scaling of thdorces exhibits a singular behavior close to the critical
Euclidean distance: thresholds* : Q(s) « (s*—s)~.

In the following, we present simulations of ultrametric
depinning performed on large systerg to L=2%0). We
recover all critical features described above with exponents
numerically indistinguishable from their counterparts in the
An important characteristic of this ultrametric distance is itsEuclidean version of the model.
degeneracy. Namely, there is one point at distateg!- 1
=1, two points at distancd=2>-1=3, and 27! points at A. Self-affine roughness

disltancield=29—1f.f For a S‘Tt of_f=2" rﬁmoin_ts, one thus counts — yirioys statistical roughness estimators can be used to
only n=log, L different values for the distance between tWo oo racterize the self-affine properties of a rough front. Con-
points of the set. There lies the main advantage of the choicgyeor for example, the standard deviatior(Ax) of the

of an ultrametric distance from the computational complexityheight differences between points separated by a distince
point of view. The expression of the elastic Green function

then derives directly f the definiti i dist A self-affine front obeyss (Ax) = Ax¢. Similarly, the width
en derives directly from the definition ot the new dis ance’vv(L) of a front of lengthL (i.e., the standard deviation of the

height distribution along the fronscales asv(L) <L¢. Fou-

dy(i,j)=2"-1. (4)

o 1 rier or wavelet transforms are also of standard use.
Gij = G(dy(i,j)) = ayi])2’ In the context of this study we can also design a “wavelet-
e 5 like” roughness estimator which exploits the natural tree
log, L ®  structure associated to the ultrametric distance. At the level
Gi=— > 2™ig@n-1). ¢£=n=log, L we definew?(n—¢+1)=w?(1) as the variance of
m=1 the height difference between nearest neighbors,
Using this definition, we can easily accelerate the update w?(1)={(h; - hj)2>du(i,j)=1. (6)

of elastic forcegstep(E)]. As illustrated in Fig. 2, instead of i ) )

updatingL sites, we can update only lpt subtrees corre- At the upper level, the height of a node is thus simply de-

sponding to sites located at the same ultrametric distance (f)‘@?ld as Ep)e _antf(n{r)ne_ﬂc average of its two ancestors:

the extremal site. A similar gain can be obtained in g@p DN _)('):[h (2)-h'"(2i+1)]/2 and the corresponding

for the determination of the extremal site. Technical detail/ariancew?(m) is computed. This sequence is iterated up to

regarding the numerical implementation of the algorithm arehe root of the tree. At each levet corresponds to an ultra-

developed in the Appendix. The basic steps of the algorithninetric distancen=n-£+1 and we have

then scale with logL instead ofL. The price to pay for this 2 20(m-1

numerical advantgge is the loss of trF])e translr;ti)(/)nal invari- W(m) o 2240 or w(m) dy(m)°. @)

ance. We show below that it does not affect the universality We present now numerical results obtained for these vari-

class of the model. ous roughness estimators. The simulations have been per-
The simulations have been performed on systems of sizéermed on systems of sizes uplte-2%°. In Figs. 3 and 4, we

up to L=2% The numerical runs were performed over ashow the scaling behaviors obtained for the wavelet rough-

large durationT with respect to the natural correlation time ness estimatow(d,) and the widthw(L) of the interface. We

of the systemr «L% In the case of the largest systdm obtain perfect power-law behaviors over six decades and we

=220 we usedT=2.5x 10"~ 1007, . only show here in logarithmic scale the residuals after nor-
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0.1 ' I ' I ' | ' T ' I '

FIG. 3. Widthw(L) of the front
(standard deviation of the height dis-
tribution) for growing lateral sized
after normalization by a power law of
exponent {. The simulations have
been run from over 1 iterations
steps forL=2% up to 2.5<10% for
L=2%0. The circle and the square
symbols correspond, respectively, to a
uniform and a Gaussian distribution
of the trap depth.

- I ] 1 | 1 | 1 | 1 | 1
0'18 10 12 14 16 18 20

log, L

malization by a power law of exponefitThis procedure is a the central valug=0.391. This value slightly underestimates
very sensitive way of detecting deviations from a power lawthe results obtained from the width estimator and slightly
Note that previous published works deal with Jag=10. overestimates the results obtained from the wavelet estima-
We present simulations performed with two kinds of dis-tor. A conservative estimate of the roughness exponent thus
tributions for the trap depths, namely uniform and Gaussiarmappears to be
(respectively denoted by the subscrigsand b in the
figures. £=0.391+0.005. (8)
An estimation of the roughness exponent can be extracted
from each individual set of data. Note that the fluctuations of 8. Avalanche behavior—D .
this estimate due to the choice of the nature of disorder or the - Avalanche behavior—Dynamic exponent
roughness estimator are larger than the deviation from the The avalanche behavior is characteristic of the dynamics
power-law behavior itself. All results are presented here withof the front close to threshold forcing. Although an extremal

0.2 T T T I T

i FIG. 4. Wavelet roughness estima-
tor w(m) against the ultrametric dis-
tanced,(m)=2"-1. The simulations
have been performed on a system of
size L=2%° run over 2.5< 10'° itera-

o tion steps. The circle and the square
symbols correspond, respectively, to a
uniform and a Gaussian distribution
of the trap depth.

0 5 10 15 20
log,d
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O T | T I d\\\l I T I T T I T
| qaqssasp Bt o, o A=l |
(e} @E&@ o At=4
7 < o At=16
10+ 2 A At=64 |
— T 4 At=256
= 8l ---- slope -2
< %
L % d
~ o
— § FIG. 5. After rescaling, the distri-
gn"_QO - Q‘@ — bution of ultrametric distanced, be-
a « tween sites depinning at timteand t
— i Q‘@ i +At collapses on a unique master
N Q‘@ curve. The dynamic exponent used
=h) 2 e
9 o, for the rescaling iz=1.39.
30+ L) n
=
Q\
L h- N
_40 1 | 1 ] 1 | 1 ] 1 1 ] 1
-8 -4 0 4 8 12 16 20
1/z
log2 (Ax/At )

driving does not allow us to recover the real dynamics of theof the front are described by a universal exponent and a
front, avalanches associated to a given level of the drivinginiversal function describing the fluctuations of thes-
force F can be reconstructed from the history of the extremakaled width of the interface. This property has been evi-
force signals(t). An avalanche thus consists of a continuousdenced for various growth model€Edwards-Wilkinson,

series of depinning events such ths) <F. Instead of re-

Kardar-Parisi-Zhang, etc[27] and has been recently applied

constructing these avalanches, it is classical in the frameo the case of depinning interfack28]. Note that in the latter

work of extremal model$25] to work directly from the ex-
tremal force signal. Let us consider a time lag(a number
of iterationg. We introduce the distancéx along the front
between the sites depinning atand t+At, respectively. It
appears[8] that the distributions of these distancAs at
fixed time lagAt can be rescaled in a universal form,
1 Ax
P(AX;At) = AT@"”(F’Z) , 9

where (u) < u? for u<1 and(u)=cste foru>1. The ex-

ponenta is well approximated by the exponent of the elastic

kernel of Eq.(2), a=2, and the dynamic exponentcan be
related to the roughness exponent: if a sequencd depin-
ning events spreads over a distaroealong the front, the
knowledge of the roughness of the front ouvex leads to
At=AxAX¢, thusz=1+¢ [8,26].

This scaling is recovered in the framework of ultrametric

depinning, where we measur@dd,, At). We check in Fig. 5

that after rescaling, all distributions collapse on a unique
master curve. The rescaling was obtained with the value

=1.39; for large arguments the behavior/ois well approxi-
mated by a power law of exponeat 2.

V. SCALING FUNCTIONS

case, beyond the interface width, the technique can be used
to characterize other fluctuating quantities. In particular, the
distribution of the depinning threshold of a finite elastic line
under extremal driving can be shown to be univef2al|24.

In the present study, we show that the choice of an ultramet-
ric distance does not affect these universal distributions.
More precisely, the fluctuations of interface width and depin-
ning threshold are shown to be described by universal func-
tions and these functions appear to be very close to or iden-
tical to their counterparts obtained in the framework of a
depinning model with Euclidean distance.

These statistical distributions are, however, sensitive to
the boundary condition§eriodic boundary conditions ver-
sus isolated systenj29]. In the following, we use periodic
boundary conditions. In the ultrametric case, the resumma-
tion over all replicas induces an additional mean field con-
tribution 1/2.2 equally shared by alG;;, i #j.

A. Universal width fluctuations

Following Ref.[28], we study the distribution of the res-
caled widthw?/(w?), where{w?) is the temporal average of
the width of a depinning front of finite exteht In Fig. 6, we
present results obtained for various system sizes in both
cases of Euclidean and ultrametric distance. We observe that

In addition to critical exponents, the pinned state is alsaall rescaled distributions collapse onto a master curve regard-

characterized by scaling functiofig7]. In the specific case

less of the size of the front and the Euclidean or hierarchical

of interface dynamics, this means that the critical propertiesnetric.
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1.2 T | T T T T T T
£ o L=2° (Buclidean)
I ¢ & o L=2" (Buclidean)
< I..=212 (Euclidean)
08L — 1=2"" (ultrametric) |
i - L=2" (ultrametric)
NB T=p™ (ultrametric) FIG. 6. Distribution of the res-
¥0.6 caled width of the depinning front for
NB sizesL =210, 211 gandL =212 in the Eu-
= clidean model and.=29,212 and L

=2in the ultrametric model. All dis-
tributions collapse on the same curve.

o
~

0.2

0 sp 1 2 e T :: e
3. 3
W /<w >

B. Universal depinning force fluctuations We see in Fig. 8 that the choice of an ultrametric distance

As developed above, the extremal dynamics gives directlightly changes the shape of the distribution obtained after
access to the fluctuations of the driving force needed to depifescaling. This may mean that these conditional distributions
the front site by site. Most of these fluctuations simply cor-are more sensitive to the boundary conditions and the loss of
respond to the depinning of near neighbnghich receive translation invariance induced by the ultrametric model than
the largest contributions of the elastic redistribujiand are & macroscopic quantity such as the width of the interface.
highly sensitive to the details qf the pinning force d|so.rde'r. VI. CONCLUSION
The other part of these fluctuations corresponds to depinning
events taking place at a larger distarttéom the previous We developed a model based on the use of an ultrametric
depinning site. In other terms, the front can be regarded a@istance to study depinning with long-range elastic interac-
pinned over the distance between the two successive ex- tions. This choice allows us to reduce the complexity of an
tremal sites. Conditioning the depinning force distribution to€lementary step of computation to jdg with respect to the
this distanced between successive extremal sites thus allowsystem size.. We performed numerical simulations on sys-
us to define distributions of size-dependent effective threshtems of size 19 more than two orders of magnitude larger
olds. (Note that in the context of fracture, it can be seen as dhan in previously published results. We propose an estimate
distribution of effective toughneg80].) An effective thresh-  of the roughness exponegjt=0.391+0.005 consistent with
old over a distancel can also be seen as the force needed téhe values measured for the Euclidean counterpart of the
entirely depin a front of sizel. It can actually be shown model. Moreover, we obtained scaling functions that are ei-
[23,24 that asd increases, the distributior3(s;d) tend to  ther identical or very close in both cases. Therefore, the
peak and approach the critical threshstd This behavior is ~ choice of an ultrametric distance appears not to affect the
recovered in our ultrametric variant as illustrated in Fig. 7,universality class of the depinning transition.

where we plotted the global distributid®(s) and the contri- ~ These results were obtained in the specific case of an
butions P(S,du) Corresponding to the different ultrametric interfacial fracture front, l.e., the elastic forces decay as the
distances. inverse square of the distance. The same approach can be

The typical elastic force fluctuations over a distadasan ~ 9eneralized to any long-range elastic kernel with an arbitrary
moreover be estimatedif ©'«d~19. Both the widtho(d)  €XPonentx for the algebraic decay of the forces. In particu-
and the gap to the critical threshoBd)=s*~(s)(d) of the lar, prellmllnary results indicate tha’g wheﬁ?:"a,'one recov-
center of these distribution actually follow this scaling. As ers the universality CIQSS of L_a_pIaC|an e_Iast|C|ty.
developed in Refg23,24, this property allows for a precise Beyond the n_umenc_al efficiency, this model may thqs
extrapolation of the critical threshold by extrapolation of theServe as a starting point for a real-space renormalization

linear relationship betwee(s)(d) and o(d) up to the force analysis. Indeed, a coarse grained p_icture of the model pre-
value cancelings,. Moreover, this rescsaling results in a col- SEMVes exactly the same structure with “dressed” thresholds
s ’

LIS . ) and front advances, and thus the solution of a sinhpte
lapse of all distribution over a single master curve: . i
front model may open the way to an analytic determination

P(s;d) = d* 5[ d 4(s* - 9)]. (10)  of critical exponents and universal scaling functions.
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1

10 ' | : | ' | '
0f_ -
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-1 |
10
FIG. 7. Distribution of depinning
10‘2 — — forces (bold line) and contributions
@ corresponding to growing distances
[a ¥ 3 along the front between successive
10°1 — depinning sites. The larger the dis-
tance, the narrower the distribution
4 and the closer from the critical thresh-
10 ™ . old s*.
-5 -
10
-6 . : E" ) 3
1015 1 0.5 0 0.5
S
APPENDIX A: NUMERICAL IMPLEMENTATION the extremal sité,. Actually, 2™ different sites are at this
OF THE MODEL same distance from the extremal sigeand form a subtree

In this appendix, we describe the algorithm used to rurfsee Fig. 2 Instead of updating sequentially the elastic force
this ultrametric model of depinning. As mentioned above, thdncrement on every site, it is possible to update the elastic
structure of the algorithm is roughly similar to the original force actlng on the whole subtree. To this aim, we define the
one, but stepgB) and (E) are characterized by a complexity force ¢ as the force transported by tita branch of the’th
in log, L instead ofL. level of the tree. The first levgf =1) corresponds here to the

Let us first consider the redistribution of elastic forces thatwo branches at the root, and the levékFlog, L) corre-
take place after a depinning event. The increment of force agponds to the branches pointing toward thesites of the
a given sitej only depends on its distanck(iy,j)=2™-1to  front(the leaves of the trgeUsing this definition, the elastic

0.5 ! | ! | T | T T

i o d=2’ (Euclidean)

| d=24 (Euclidean) £33
0.4 S AN
d=2" (Euclidean)
- & 3=2° (Buclidean)
03k — =2’ (ultrametric)

o

O

— FIG. 8. After renormalization, the

-’.é: """" d=2* (ultrametric) centered unit conditional distribution
“ - =+ d=2’ (ultrametric) - of depinning force falls onto a single
n_‘z sma ggbin . curve independently of the length
02 d=2" (ultrametric) -  The master curve obtained in the ul-
trametric casdcontinuous linep dif-
| fer slightly from its Euclidean coun-
terpart(symbols.
0.1 _
(11 N 1
-6 -4 -2 0 2 4
(s-<s>)/0,
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force acting on site is merely the sum of the forces trans-
ported by its ancestor branches,

(A5)

Then we proceed iteratively up to the root of the tree,

Oin=% Qn=1.

n=log, L
— i [ [
fel= > QDS'Zn_f'e, (A1) Tip-1= MiN(02 o+ @5 0, Ooiv1p+ Poivap),  (A6)
=1
. . . . - . | |
In the hierarchical algorithm, the st¢f) thus consists of Ap 1= agip i 0 p+ 05 < O%is1pt Poinip
updating the branches of the force tree affected by the redis- _ : el el
trliobutiong of elastic forces: ¢ ,=¢® +G, 5h-y ' =arp 1M 02p* ¢ap> 2u1pF Cainip:
. QDJ@@ (PJO,€ igpm®iig ]0 (A7)

={io/ 2"}, where{i} is the operation of exchanging the par-

ity bit of i. The location and the value of the extremal site are thus
In the same spirit, we can build a tree to determine theyiven by

value and location of the extremal site. The determination of

the extremal site requirespriori L — 1 operations of elemen- (A8)

. . _ . l .
tary comparisons to fine* =min;(y ~f 7). After each depin-  \vithout prior knowledge, the computation for the determi-

ning event, the elastic forces are updated on every site so thahiion of the extremal site of a given conformation is simply
the samd.—1 operations have to be performed at each iteraghe sum of all comparisons at each level of the tijer-2
tion. In the ultrametric model, the situation is slightly differ- —_on_1-| _1 This is exactly the same result as in the stan-

ent because the elastic force on a site can be written as a SWRrd case. Consider now the situation after the depinning

* — HE—
ST = 0-1,01 |0— (11’0.

of the forces transmitted by the branches of the [see Eq.
(Al)]. As a consequence, two sitesand j share all force

event: the trap depth, is updated at the extremal site and
only n=log, L branches of the tree are altered by the elastic

components acting on branches above their nearest COMM@fce distribution. A sequence of comparisons thus allows

ancestor,
n=log, L
I_ I
f ? =P+ E Qoszn—t”g; (A2)
£=m+1
n=log, L
I I
f ? - (I)m + E (P;a/zn—fvgy (AS)
{=m+1
m m
I |
q)m: 2 (Pie/gn—é"(g = E (Pje/zn—("{/- (A4)
=1 =1

We can then perform the comparison operations level by
level going up the tree of elastic forces. To be more specific,

let us define the following hierarchical structure. At level
=log, L, we define

us to find the new extremal site: we start at the former ex-
tremal sitei,

p:n:jozio, (TjO:th, Gf]'O:io. (Ag)
Then forp=nto p=1 we proceed iteratively to update the
tree and determine the valug o and locatioru; o of the new

extremal site,

Ip=id2"P ky={jp}, (A10)
9}, p-1 = Minfoj o+ ‘Pil),p'“kp,p * GDE:),p]' (A11)
a =, o 1m0y 0% e,

= oy if Tj_1p-1= Oy + gpﬁ')'p. (A12)
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