
Large-scale numerical simulations of ultrametric long-range depinning

Damien Vandembroucq and Stéphane Roux
Unité Mixte CNRS/Saint-Gobain “Surface du Verre et Interfaces,” 39 Quai Lucien Lefranc, 93303 Aubervilliers Cedex, France

(Received 26 January 2004; published 10 August 2004)

The depinning of an elastic line interacting with a quenched disorder is studied for long-range interactions,
applicable to in-plane crack propagation or wetting. An ultrametric distance is introduced instead of the
Euclidean distance, allowing for a drastic reduction of the numerical complexity of the problem. Based on
large-scale simulations, two to three orders of magnitude larger than previously considered, we obtain a very
precise determination of critical exponents which are shown to be indistinguishable from their Euclidean
metric counterparts. Moreover, the scaling functions are shown to be unchanged. The choice of an ultrametric
distance thus does not affect the universality class of the depinning transition and opens the way to an analytic
real-space renormalization-group approach.
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I. INTRODUCTION

The depinning of an elastic interface in a random environ-
ment gives a common theoretical framework to describe
physical phenomena as various as the advance of a magnetic
wall, the propagation of an interfacial fracture front, or the
wetting of a disordered surface(see, e.g., Refs.[1–3] for a
recent review). The richness of the physics encountered in
these different situations results from the same feature. The
disorder of the environment which tends to anchor the inter-
face competes with an elasticlike term which tends to keep
the interface smooth. The tuning of an external driving force
allows us to go through a critical transition. Below threshold,
the interface can only advance over a finite distance before
stopping in a blocked conformation. Above threshold, the
interface can move freely and acquire a finite velocity. At
threshold, the system is characterized by a set of universal
critical exponents.

In the case of overdamped dynamics, the motion can be
described by the following stochastic equation:

m]thsx,td = Fextstd + Felsx,td + g „x,hsx,td…, s1d

where hsx,td denotes the position of the front,Fextstd the
external driving force,Felsx,td the elastic term due to the
distortion of the front, andg (x,hsx,td) the frozen disorder.
Depending on the physical phenomenon considered, the elas-
tic term can take different forms. In the case of magnetic
walls or of wetting in a Hele-Shaw cell, the interactions to be
taken into account are short-ranged and at first order the
elastic force can be estimated by a simple Laplacian term:
Felsx,td=¹2hsx,td. In the case of the advance or receding of
a triple line on a disordered substrate[4] or of in-plane crack
front propagation, long-range interactions have to be consid-
ered. In the latter case, elastic interactions are mediated via
the bulk along the whole front. A first-order perturbation
analysis for the front roughness gives[5]

Felsx,td =
1

p
E dx8

hsx,td − hsx8,td
ux − x8u2

. s2d

This long-range elastic string model has been widely stud-
ied over the past ten years. In particular, the interface is

shown to exhibit a self-affine roughness: the widthw of the
interface scales with the system sizeL asw~Lz. The differ-
ent numerical works[6–9] performed give estimations of the
roughness exponentz spreading in the interval[0.34–0.40].
The latter exponent and more generally the universality class
of the model depend strongly on the long-range nature of the
kernel in Eq.(2). For instance, ifFel~¹2h, thenz=1.25. In
the long-range case, the most recent results obtained by
Rosso and Krauth[9] give a valuez<0.39 significantly
larger than the theoretical predictionz= 1

3 obtained by one-
loop calculations of the renormalization-group technique
[10,11] and equally smaller than the recent two-loop estima-
tion [12] z<0.47. Note, however, that these values are not
consistent with the resultsz<0.5−0.6 obtained experimen-
tally for interfacial fracture[7] or wetting[13,14]. Therefore,
it is of the utmost importance to have an accurate determi-
nation of these critical exponents, and thus to be able to
study large system sizes.

In the following, we present an ultrametric version of an
extremal model of depinning(see Ref.[8] for a detailed
study of the original model with the Euclidean metric). The
complexity of the elementary step of calculation is shown to
scale with the system sizeL as log2 L instead ofL in the
original model. This allows us to perform simulations on
systems of sizeL=220<106, which corresponds to a gain of
two to three orders of magnitude compared with other pub-
lished works based on the Euclidean metrics. The universal-
ity class of the model is shown to be unchanged. Beyond the
numerical acceleration, this ultrametric model of depinning
may thus also serve as a starting point for a real-space renor-
malization analysis.

The paper is organized as follows. In the first part, we
recall the definition of the original model; we then define the
ultrametric version and present the main features of the new
model. In the second part, we give results of simulations
performed on large systems and focus on the critical proper-
ties of this ultrametric model of depinning. We conclude that
it lies in the same universality class as its Euclidean version.
The details of the numerical implementation of the algorithm
are finally given in an Appendix.
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II. EXTREMAL DRIVING OF A DEPINNING FRONT

Various numerical techniques can be used to study the
depinning phenomenon in the vicinity of the critical thresh-
old. Early works used a direct integration of the equation
above via Euler[6] or Runge-Kutta[15] schemes. Recently,
Rosso and Krauth[9] developed an iterative algorithm to
determine the blocked conformations corresponding to a
given constant forcing. They used periodic boundary condi-
tions both along the front and in the direction of propagation,
and the critical threshold is reached when the last blocked
conformation starts moving.

In the case of strong pinning, the advance of the front
proceeds by successive local instabilities. This avalanche be-
havior is characteristic of the motion of a depinning front.
This property can be exploited to develop an efficient algo-
rithm describing the motion of the front close to the critical
threshold. Instead of driving the front at a constant external
force, it consists of tuning the latter at the exact value such
that one and only one site can depin at a time. In so doing,
the sequence of depinning events is preserved. The imple-
mentation of this extremal dynamics, which has been used
since 1992 in various interface growth models[16–21], is
straightforward. At each iteration step one needs to identify
the weakest site, to advance it up to the next trap, and to
update the long-range elastic forces due to the change of
front conformation. The latter operation scales with the size
of the front. The great advantage of this method is that the
system remains constantly at the edge of the critical behavior
and it is not necessary to tune the external driving force(see,
e.g., Ref.[22] for a discussion on the use of extremal dynam-
ics to reach the critical state and more generally on the link
between self-organized criticality and classical critical tran-
sitions).

Based on the above described extremal modeling, we now
detail the way to implement the model numerically. The front
is discretized along a regular horizontal grid;i P f0,L−1g
andhi are the coordinates along the front and in the direction
of propagation, respectively. Traps of random depthsgi are
randomly distributed along the direction of propagation. The
distortion of the front induces elastic forcesf i

el via a Green
functionGij =Gsr ijd, wherer ij is the Euclidean distance sepa-
rating two sitesi and j along the front. In the case of long-
range elastic interactions, a discretized version of the elastic
redistribution function is such that

Gij ~ iÞ jui − j u−a, Gii = − o
iÞ j

Gij . s3d

Let us consider a given conformation of the front. For each
site si ,hid located in a trap of depthgi, we can define a local
depinning thresholdsi =gi − f i

el: this site depins as soon as the
external driving forceF overcomes the thresholdF.si. The
depinning thresholdsstd of the front conformation obtained
at iterationt thus corresponds to the minimal external force
to be exerted so that at least one site of the front can depin:
sstd=mini si. Finally, the critical thresholds* above which
the front can freely propagate iss* =maxt sstd. The basic rule
of the extremal driving consists at each iteration stept of
simply tuning the external force at exactly the value of the

depinning threshold of the current front conformation:Fstd
=sstd. Once identified, the extremal site is advanced up to the
next trap, the elastic forces are updated to take into account
this local displacement, and the new valuesst+1d of the
front depinning threshold is evaluated. We summarize below
the elementary steps of the algorithm used to run the model
and we estimate their complexity, given in brackets, to the
sizeL of the system.

(A) Initialization hi ←0, f i
el←0, gi ← random number,

i P f0,L−1g, L=2n, complexityfLg.
(B) Identification of the external sitei0 such that

gi0
− f i0

el=minisgi − f i
eld, complexityfLg.

(C) Advance of the extremal sitedhi0
← random number,

hi0
←hi0

+dhi0
, complexity[1].

(D) Update of the trap depthgi0
← random number[1].

(E) Update of the elastic forcesf i
el← f i

el+Gii 0
dhi0

, where
Gij ~ ui − j u−2, complexityfLg.

(F) Back to step(B).

a←b denotes the assignment of valueb to variablea. Except
for the first initialization step, the two limiting steps are the
identification of the extremal site and the update of elastic
forces along the front which both scale linearly with the sys-
tem sizeL. This sequence of elementary steps is then iterated
T times to obtain statistical averages of the quantities of in-
terest.

III. ULTRAMETRIC DEPINNING

We now turn to the presentation of the ultrametric model.
The basic rules of the extremal model remain identical ex-
cept for the redistribution of the elastic forces. Instead of
using the natural Euclidean distance along the front, we use
an ultrametric distance. The structure of the algorithm stays
roughly similar to the previous one, but steps(B) and(E) are
shown to be characterized by a complexity in log2 L instead
of L.

The most natural structure to be used in the context of a
model with ultrametric distance is a dyadic tree. Let us first
build such a tree whose final leaves are theL sites of the
depinning front. As illustrated in Fig. 1, the simplest ultra-
metric distance between two sitesi and j is the number of
branches that composes the shortest path on the tree between

FIG. 1. The depthm of the first common ancestor of sitesi and
j is used to compute the ultrametric distance between pointsi and j
asdusi , jd=2m−1.
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the two sites. This is exactly twice the depthm of the nearest
common ancestor of these two sites. Different choices of
distance are possible based on the tree structure. In the fol-
lowing, we use a definition that preserves the scaling of the
Euclidean distance:

dusi, jd = 2m − 1. s4d

An important characteristic of this ultrametric distance is its
degeneracy. Namely, there is one point at distanced=21−1
=1, two points at distanced=22−1=3, and 2p−1 points at
distanced=2p−1. For a set ofL=2n points, one thus counts
only n=log2 L different values for the distance between two
points of the set. There lies the main advantage of the choice
of an ultrametric distance from the computational complexity
point of view. The expression of the elastic Green function
then derives directly from the definition of the new distance,

Gij = G„dusi, jd… ~
1

dusi, jd2 ,

s5d

Gii = − o
m=1

log2 L

2m−1Gs2m − 1d.

Using this definition, we can easily accelerate the update
of elastic forces[step(E)]. As illustrated in Fig. 2, instead of
updatingL sites, we can update only log2 L subtrees corre-
sponding to sites located at the same ultrametric distance of
the extremal site. A similar gain can be obtained in step(B)
for the determination of the extremal site. Technical details
regarding the numerical implementation of the algorithm are
developed in the Appendix. The basic steps of the algorithm
then scale with log2 L instead ofL. The price to pay for this
numerical advantage is the loss of the translational invari-
ance. We show below that it does not affect the universality
class of the model.

The simulations have been performed on systems of sizes
up to L=220. The numerical runs were performed over a
large durationT with respect to the natural correlation time
of the systemtL~Lz. In the case of the largest systemL
=220 we usedT=2.531010<100tL.

IV. CHARACTERIZATION OF THE CRITICAL STATE:
NUMERICAL RESULTS

The propagation of depinning fronts at the critical thresh-
old exhibits a rich phenomenology. The front presents a self-
affine roughness: its widthwsDxd measured over a distance
Dx scales aswsDxd~Dxz, wherez is the roughness exponent.

The dynamics of depinning is characterized by an ava-
lanche behavior. In the framework of an extremal dynamics,
this can be described by the distribution of the distancesr
between two successive depinning sites:Psrd~ r−a. General-
izing this distribution for sites corresponding to depinning
events separated by a given time lag allows us to obtain in
addition the dynamic exponentz which characterizes the
spreading of the avalanches. Namely, the lateral extensionj
of an avalanche of durationDt scales asj~Dt1/z.

Another quantity of interest is the external forces needed
to depin a given conformation of the front. It can be shown
[23,24] that the distributionQssd of these front depinning
forces exhibits a singular behavior close to the critical
thresholds* : Qssd~ ss*−sdm.

In the following, we present simulations of ultrametric
depinning performed on large systems(up to L=220). We
recover all critical features described above with exponents
numerically indistinguishable from their counterparts in the
Euclidean version of the model.

A. Self-affine roughness

Various statistical roughness estimators can be used to
characterize the self-affine properties of a rough front. Con-
sider, for example, the standard deviations sDxd of the
height differences between points separated by a distanceDx.
A self-affine front obeyss sDxd~Dxz. Similarly, the width
wsLd of a front of lengthL (i.e., the standard deviation of the
height distribution along the front) scales aswsLd~Lz. Fou-
rier or wavelet transforms are also of standard use.

In the context of this study we can also design a “wavelet-
like” roughness estimator which exploits the natural tree
structure associated to the ultrametric distance. At the level
,=n=log2 L we definev2sn−,+1d=v2s1d as the variance of
the height difference between nearest neighbors,

v2s1d = kshi − hjd2ldusi,jd=1. s6d

At the upper level, the height of a node is thus simply de-
fined as the arithmetic average of its two ancestors:
hs,−1dsid=fhs,ds2id−hs,ds2i +1dg /2 and the corresponding
variancew2smd is computed. This sequence is iterated up to
the root of the tree. At each level,m corresponds to an ultra-
metric distancem=n−,+1 and we have

v2smd ~ 22zsm−1d or vsmd ~ dusmdz. s7d

We present now numerical results obtained for these vari-
ous roughness estimators. The simulations have been per-
formed on systems of sizes up toL=220. In Figs. 3 and 4, we
show the scaling behaviors obtained for the wavelet rough-
ness estimatorvsdud and the widthwsLd of the interface. We
obtain perfect power-law behaviors over six decades and we
only show here in logarithmic scale the residuals after nor-

FIG. 2. When redistributing elastic forces after the depinning of
the extremal sitei0, all sites located at the same ultrametric distance
m=dusi , i0d belong to a common subtree and receive the same con-
tribution. This allows an update by block that scales with the num-
ber log2 L of these subtrees. Similarly, the tree structure allows us to
find the next extremal sites in only log2 L operations.
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malization by a power law of exponentz. This procedure is a
very sensitive way of detecting deviations from a power law.
Note that previous published works deal with log2 Lø10.

We present simulations performed with two kinds of dis-
tributions for the trap depths, namely uniform and Gaussian
(respectively denoted by the subscriptsa and b in the
figures).

An estimation of the roughness exponent can be extracted
from each individual set of data. Note that the fluctuations of
this estimate due to the choice of the nature of disorder or the
roughness estimator are larger than the deviation from the
power-law behavior itself. All results are presented here with

the central valuez=0.391. This value slightly underestimates
the results obtained from the width estimator and slightly
overestimates the results obtained from the wavelet estima-
tor. A conservative estimate of the roughness exponent thus
appears to be

z = 0.391 ± 0.005. s8d

B. Avalanche behavior—Dynamic exponent

The avalanche behavior is characteristic of the dynamics
of the front close to threshold forcing. Although an extremal

FIG. 3. Width wsLd of the front
(standard deviation of the height dis-
tribution) for growing lateral sizesL
after normalization by a power law of
exponent z. The simulations have
been run from over 108 iterations
steps forL=28 up to 2.531010 for
L=220. The circle and the square
symbols correspond, respectively, to a
uniform and a Gaussian distribution
of the trap depth.

FIG. 4. Wavelet roughness estima-
tor vsmd against the ultrametric dis-
tancedusmd=2m−1. The simulations
have been performed on a system of
size L=220 run over 2.531010 itera-
tion steps. The circle and the square
symbols correspond, respectively, to a
uniform and a Gaussian distribution
of the trap depth.
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driving does not allow us to recover the real dynamics of the
front, avalanches associated to a given level of the driving
forceF can be reconstructed from the history of the extremal
force signalsstd. An avalanche thus consists of a continuous
series of depinning events such thatsstd,F. Instead of re-
constructing these avalanches, it is classical in the frame-
work of extremal models[25] to work directly from the ex-
tremal force signal. Let us consider a time lagDt (a number
of iterations). We introduce the distanceDx along the front
between the sites depinning att and t+Dt, respectively. It
appears[8] that the distributions of these distancesDx at
fixed time lagDt can be rescaled in a universal form,

PsDx;Dtd =
1

DxacS Dx

Dt1/zD , s9d

wherecsud~ua for u!1 andcsud<cste foru@1. The ex-
ponenta is well approximated by the exponent of the elastic
kernel of Eq.(2), a<2, and the dynamic exponentz can be
related to the roughness exponent: if a sequence ofDt depin-
ning events spreads over a distanceDx along the front, the
knowledge of the roughness of the front overDx leads to
Dt<DxDxz, thusz=1+z [8,26].

This scaling is recovered in the framework of ultrametric
depinning, where we measuredPsdu,Dtd. We check in Fig. 5
that after rescaling, all distributions collapse on a unique
master curve. The rescaling was obtained with the valuez
=1.39; for large arguments the behavior ofc is well approxi-
mated by a power law of exponenta=2.

V. SCALING FUNCTIONS

In addition to critical exponents, the pinned state is also
characterized by scaling functions[27]. In the specific case
of interface dynamics, this means that the critical properties

of the front are described by a universal exponent and a
universal function describing the fluctuations of the(res-
caled) width of the interface. This property has been evi-
denced for various growth models(Edwards-Wilkinson,
Kardar-Parisi-Zhang, etc.) [27] and has been recently applied
to the case of depinning interfaces[28]. Note that in the latter
case, beyond the interface width, the technique can be used
to characterize other fluctuating quantities. In particular, the
distribution of the depinning threshold of a finite elastic line
under extremal driving can be shown to be universal[23,24].
In the present study, we show that the choice of an ultramet-
ric distance does not affect these universal distributions.
More precisely, the fluctuations of interface width and depin-
ning threshold are shown to be described by universal func-
tions and these functions appear to be very close to or iden-
tical to their counterparts obtained in the framework of a
depinning model with Euclidean distance.

These statistical distributions are, however, sensitive to
the boundary conditions(periodic boundary conditions ver-
sus isolated system) [29]. In the following, we use periodic
boundary conditions. In the ultrametric case, the resumma-
tion over all replicas induces an additional mean field con-
tribution 1/2L2 equally shared by allGij , i Þ j .

A. Universal width fluctuations

Following Ref.[28], we study the distribution of the res-
caled widthw2/ kw2l, wherekw2l is the temporal average of
the width of a depinning front of finite extentL. In Fig. 6, we
present results obtained for various system sizes in both
cases of Euclidean and ultrametric distance. We observe that
all rescaled distributions collapse onto a master curve regard-
less of the size of the front and the Euclidean or hierarchical
metric.

FIG. 5. After rescaling, the distri-
bution of ultrametric distancesdu be-
tween sites depinning at timet and t
+Dt collapses on a unique master
curve. The dynamic exponent used
for the rescaling isz=1.39.
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B. Universal depinning force fluctuations

As developed above, the extremal dynamics gives direct
access to the fluctuations of the driving force needed to depin
the front site by site. Most of these fluctuations simply cor-
respond to the depinning of near neighbors(which receive
the largest contributions of the elastic redistribution) and are
highly sensitive to the details of the pinning force disorder.
The other part of these fluctuations corresponds to depinning
events taking place at a larger distanced from the previous
depinning site. In other terms, the front can be regarded as
pinned over the distanced between the two successive ex-
tremal sites. Conditioning the depinning force distribution to
this distanced between successive extremal sites thus allows
us to define distributions of size-dependent effective thresh-
olds.(Note that in the context of fracture, it can be seen as a
distribution of effective toughness[30].) An effective thresh-
old over a distanced can also be seen as the force needed to
entirely depin a front of sized. It can actually be shown
[23,24] that asd increases, the distributionsPss;dd tend to
peak and approach the critical thresholds*. This behavior is
recovered in our ultrametric variant as illustrated in Fig. 7,
where we plotted the global distributionPssd and the contri-
butions Pss;dud corresponding to the different ultrametric
distances.

The typical elastic force fluctuations over a distanced can
moreover be estimated:df el~d−s1−zd. Both the widthsssdd
and the gap to the critical thresholddssdd=s*− kslsdd of the
center of these distribution actually follow this scaling. As
developed in Refs.[23,24], this property allows for a precise
extrapolation of the critical threshold by extrapolation of the
linear relationship betweenkslsdd and sssdd up to the force
value cancelingss. Moreover, this rescaling results in a col-
lapse of all distribution over a single master curve:

Pss;dd = d1−zxfd1−zss* − sdg. s10d

We see in Fig. 8 that the choice of an ultrametric distance
slightly changes the shape of the distribution obtained after
rescaling. This may mean that these conditional distributions
are more sensitive to the boundary conditions and the loss of
translation invariance induced by the ultrametric model than
a macroscopic quantity such as the width of the interface.

VI. CONCLUSION

We developed a model based on the use of an ultrametric
distance to study depinning with long-range elastic interac-
tions. This choice allows us to reduce the complexity of an
elementary step of computation to log2 L with respect to the
system sizeL. We performed numerical simulations on sys-
tems of size 106 more than two orders of magnitude larger
than in previously published results. We propose an estimate
of the roughness exponentz=0.391±0.005 consistent with
the values measured for the Euclidean counterpart of the
model. Moreover, we obtained scaling functions that are ei-
ther identical or very close in both cases. Therefore, the
choice of an ultrametric distance appears not to affect the
universality class of the depinning transition.

These results were obtained in the specific case of an
interfacial fracture front, i.e., the elastic forces decay as the
inverse square of the distance. The same approach can be
generalized to any long-range elastic kernel with an arbitrary
exponenta for the algebraic decay of the forces. In particu-
lar, preliminary results indicate that whenaù3, one recov-
ers the universality class of Laplacian elasticity.

Beyond the numerical efficiency, this model may thus
serve as a starting point for a real-space renormalization
analysis. Indeed, a coarse grained picture of the model pre-
serves exactly the same structure with “dressed” thresholds
and front advances, and thus the solution of a simpleL=2
front model may open the way to an analytic determination
of critical exponents and universal scaling functions.

FIG. 6. Distribution of the res-
caled width of the depinning front for
sizesL=210,211 andL=212 in the Eu-
clidean model andL=210,212 and L
=214 in the ultrametric model. All dis-
tributions collapse on the same curve.
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APPENDIX A: NUMERICAL IMPLEMENTATION
OF THE MODEL

In this appendix, we describe the algorithm used to run
this ultrametric model of depinning. As mentioned above, the
structure of the algorithm is roughly similar to the original
one, but steps(B) and(E) are characterized by a complexity
in log2 L instead ofL.

Let us first consider the redistribution of elastic forces that
take place after a depinning event. The increment of force at
a given sitej only depends on its distancedusi0, jd=2m−1 to

the extremal sitei0. Actually, 2m−1 different sites are at this
same distance from the extremal sitei0 and form a subtree
(see Fig. 2). Instead of updating sequentially the elastic force
increment on every site, it is possible to update the elastic
force acting on the whole subtree. To this aim, we define the
forcewi,,

el as the force transported by theith branch of the,th
level of the tree. The first levels,=1d corresponds here to the
two branches at the root, and the levels,=log2 Ld corre-
sponds to the branches pointing toward theL sites of the
front (the leaves of the tree). Using this definition, the elastic

FIG. 7. Distribution of depinning
forces (bold line) and contributions
corresponding to growing distances
along the front between successive
depinning sites. The larger the dis-
tance, the narrower the distribution
and the closer from the critical thresh-
old s*.

FIG. 8. After renormalization, the
centered unit conditional distribution
of depinning force falls onto a single
curve independently of the lengthd.
The master curve obtained in the ul-
trametric case(continuous lines) dif-
fer slightly from its Euclidean coun-
terpart(symbols).
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force acting on sitei is merely the sum of the forces trans-
ported by its ancestor branches,

f i
el = o

,=1

n=log2 L

wi/2n−,,,
el . sA1d

In the hierarchical algorithm, the step(E) thus consists of
updating the branches of the force tree affected by the redis-
tribution of elastic forces: w j0,,

el =w j0,,
el +Gi0,mdhi0

, j0
=hi0/2n−,j, wherehij is the operation of exchanging the par-
ity bit of i.

In the same spirit, we can build a tree to determine the
value and location of the extremal site. The determination of
the extremal site requiresa priori L −1 operations of elemen-
tary comparisons to finds* =minisgi − f i

eld. After each depin-
ning event, the elastic forces are updated on every site so that
the sameL−1 operations have to be performed at each itera-
tion. In the ultrametric model, the situation is slightly differ-
ent because the elastic force on a site can be written as a sum
of the forces transmitted by the branches of the tree[see Eq.
(A1)]. As a consequence, two sitesi and j share all force
components acting on branches above their nearest common
ancestor,

f i
el = Fm + o

,=m+1

n=log2 L

wi/2n−,,,
el , sA2d

f j
el = Fm + o

,=m+1

n=log2 L

w j /2n−,,,
el , sA3d

Fm = o
,=1

m

wi/2n−,,,
el = o

,=1

m

w j /2n−,,,
el . sA4d

We can then perform the comparison operations level by
level going up the tree of elastic forces. To be more specific,
let us define the following hierarchical structure. At leveln
=log2 L, we define

si,n = gi, ai,n = i . sA5d

Then we proceed iteratively up to the root of the tree,

si,p−1 = minss2i,p + w2i,p
el ,s2i+1,p + w2i+1,p

el d, sA6d

ai,p−1 = a2i,p if s2i,p + w2i,p
el , s2i+1,p + w2i+1,p

el

= a2i+1,p if s2i,p + w2i,p
el . s2i+1,p + w2i+1,p

el .

sA7d

The location and the value of the extremal site are thus
given by

s* = s1,0, i0 = a1,0. sA8d

Without prior knowledge, the computation for the determi-
nation of the extremal site of a given conformation is simply
the sum of all comparisons at each level of the tree:o1

n2p−1

=2n−1=L−1. This is exactly the same result as in the stan-
dard case. Consider now the situation after the depinning
event: the trap depthti0 is updated at the extremal site and
only n=log2 L branches of the tree are altered by the elastic
force distribution. A sequence ofn comparisons thus allows
us to find the new extremal site: we start at the former ex-
tremal sitei0,

p = n: j0 = i0, s j0
= tj0

, a j0
= i0. sA9d

Then for p=n to p=1 we proceed iteratively to update the
tree and determine the values1,0 and locationa1,0 of the new
extremal site,

j p = j0/2
n−p, kp = h j pj, sA10d

s jp−1,p−1 = minfs jp,p + w jp,p
el ,skp,p + wkp,p

el g, sA11d

a jp−1,p−1 = a jp
if s jp−1,p−1 = s jp,p + w jp,p

el

= akp
if s jp−1,p−1 = skp,p + w jp,p

el . sA12d
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